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,sng'y.
Sound is basically the vibration of continuous elastic substances. The vibra-

tion takes the form of an acoustic wave which can be mathematically analyzed in
the same manner as an electric wave can be analyzed. 'Sound waves generated in an
acoustic medium and confined by the rigid boundaries of a tube may be described
in much the same manner as one-dimensional transverse waves in a vibrating string
of finite length or by two-dimensional waves in a membrane fixed along its edge.

The first part of this report concerns itself with the development of the
wave equation in its general form. For this purpose, there is a discussion of
the Equation of State, the Newtonian Mechanic-l Fquations as applied to an ideal
fluid, and the Law of Conservation of Mass. These relationships lead to a second
order partial differential equation known as the three-dimensional wave equation.
It essentially describes a wave being propagated in a deformable medium in three
mutually perpendicular directions. In order to apply the wave equation to the
analysis of sound waves in water filled tubes, the equation is converted from
Cartesian to cylindrical coordinates.

It is then shown that the wave equation is separable and-that its solution
may be represented as the pfoduct of four distinct functions, each related to
only one variable. Each of these product functions is solved by successively
reducing the partial differential equation to several ordinary differential
equations. The general solution to the wave equation is then shown to be a
complex waveform being simultaneously propagated along the longitudinal and
radial axes of the tube as well as in the Q-space. The net result is a wave
which is propagated with a screw-like motion along the longitudinal axis of
the tube. The wave may be either progressive or stationary, depending upon given
boundary conditions. Assuming that the walls of the tube in which the sound wave
4s being propagated form a perfect reflector and that the waves must be finite
at the origin of the tube, it is shown that the wave equation reduces to a plane
wave, that is, one which is propagated along the longitudinal axis of the tube
only. it is further shown that, as the radial waves form a discontinuous
series of frequencies, a certain minimum frequency must not be exceeded in order
to maintain plane monochromAtic waves.

The final part-of this report deals with the application of theory to sound
waves in water filled~tubes. The acoustic impedance of a material placed at
one end of the tube is shown-to be a complex quantity which is a function of
known constants of the water, sound wave and tube. It is also a function of the
phase angle between incident And refleqted rays at the interface of the water
and macerial and of the amplitude ratio of reflected to incident pressure waves
(pulse tube method); or the ratio of minimum to maximum pressure and the dis-
tance of the pressure nodes from the interface (standing wave method). Pressure
ratios and phase angles are measureable quantities. Once determined, the
acoustic impedance may be calculated or graphically determined from Smith Charts.
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1. Definition of A Fluid. Variables Describing Continuous Deformations
I ' 2

Acoustic waves are generally generated byidonucbs ~Ad oscillatory changes in
the physical properties of matter (pressure, density, etc.). They give rise to
audible sounds when their frequencies vary from about 20 cps to 15,000 cps.
There are also ultrasonic frequencies above 15,000 cps and subsonic frequencies
below 20 cps. The manner in which a material transmits, absorbs or reflects
acoustic waves is closely connected with its internal structure. Yet the
relationships between the elemental structure of materials and the values of
their empirical constants has not been calculated to date.

The way continuous deformations give rise to acoustic waves is a consequence
of the Newtonian mechanical equations for fluids, plus certain supplementary
conditions and approxiimations.

Let us assume that we are dealing with a quasi-continuous medium like air,
water or steel. The first two media are called "fluids" because of their
propensity to flow. But the theory of relativity taught us that between the
three substances there is only a difference of degree, a solid under extreme
conditions of pressure and temperature being allowed to creep like a liquid.
Thus, any substance can be called a "fluid". Fluid properties are defined by
pressure ?, mass density a, specific weight l, viscosity ., surface tension 6,
and modulus of elasticityE . For a low Mach number M =  (ratio of velocity
of a fluid v with respect to a given coordinate system to sound velocity c in
the fluid), both hydro-dynamics and aerodynamics may be treated in the same
manner. Compressibility becomes important and must be taken into account only
when the Mach number is over about :.

In a fluid we can define at each point P at time t a pressure P, a density J
and a velocity with components u, v, w with respect to a rectangular coordinate
systemi, Which is the local velocity of a particle of the fluid passing a point
P (), Y, t) at time t and which could be very different from the average velocity
of the whole fluid. The filve quantities F, a, u, v and w are in general functions
of the coordinates X, y, f and time t. In order to determine the behavior of each
element or particle of the fluid when t varies, we must know the values of these
five quantities at any time. Therefore, we must have five relations between
these five quantities. The usual way to get them is to write five differential
equations determining them in terms of five arbitrary initial constants P, o o,
U03 -to and Wo representing the values of P, , u, V and w at time t = to.
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1,2
2. Equation of State

The first relation we need may be derived from the equation of state. In
any fluid there is a relationship between pressure P, density& and absolute
temperature T:

1) $ (Pq a, T) = 0

For an ideal gas at constant temperature (1) takes the form

2) Py=RT

where P is the absolute pressure, v is the specific volume, T the absolute
temperature, and R the universal gas constant. On setting v = 1/a we get
P =aRT. In the adiabatic case equation (?) is non-linear and takes the
form Pv ( = constant or

3) P = g (a) or a f (P)

whereo( is the gas constant.

For perturbations of small amplitudes (whicn is usually the case for acoustic
waves if we disregard shock waves) equation (3) can be placed by a linear rela-
tion, obtained by retaining the first two terms of a Taylor expansion of (3) and
disregarding higher order terms.

P ±Po +( )0+
- -0=00

so that A P = P-Po = a P  Ac. Since the velocity of sound C
have from equation h) Nic P/ a we

5) P = Po + c2 A

This equation may be regarded as the equation of state for perturbations of
small amplitude in ideql gases. The equation of state for real gases at constant
temperature would closely approximate Van der Waal's equation

6) .(P + a/V 2 ) (v-b) = RT

where P and V are the pressure and volume and a and b are molecular c-stants.
Real gas equations of state can also represent the behavior of liquids within
a limited range of pressures and temperatures. But, for a liquid in bulk, the
equation of state does not contain P as any liquid is very nearly incompressible.
Density a depends only on temperature T and we have between certain limits
a =Goo (1 + KT)- 1, K being the coefficient of dilation of the liquid due to heat
and co its density at T 0. For most cases, water may be regarded as incom-

6
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pressible, but not as far as sound waves are concerned. In other words, water
appears incompressible for static pressures (between certain limits). The
passage of a sound wave through water is really a pressure wave with a small
v riation of density approximately.expressed by LP = 2 Lo, the large value of
d associating a small variation of density Aa to a large variation of
pressure A P.
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3. Definition of External Forces

The four remaining equations are dierived from the 'three e-quations of motion
(Newtonian mechanical equations applied to fluids) and the law of mass conserva-
tion.

Suppose that at time t a fluid F occupies a volume V bounded by a surface S.
satisfying the usual conditions of smoothness and uniqueness. The external forces
acting on the elements of this fluid are of two kinds: those acting on the
volume elements occupied by F and those acting on the surface elements immersed
in or limiting F.

a. The external forces in a volume, like gravity, electric field, hydrostatic
pressure, etc., . . . are defined in terms of the element of mass dm of the fluid
F contained in the volume dV, so that dm - adV, a being the density of the fluid F
at a point P in the volumetric element ciV. These elementary forces fv are con-
sidered .to be proportional to dm and therefore are defined by the equation

7) dfv Kdm d

Kv being a proportionality constant equal to the force per unit mass.

b. There are also forces acting 'through areas immersed in or limiting F,
such as pressure exprted by the walls of the container confining F. Let dS be
an elemental area. The surface forces f. are considered to be proportional to
the area upon whichthey act and thus we may write

8) df - Ks dS

where Ks is a proportionality constant equal to the force per unit area.

8
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4. Mechanical Equations
3

We may now write the mechanical equations of motion for a fluid F corresponding
to the Newtonian equations for any material system. .This is simply an applica-
tion of Newtonian mechanics to continuous media. Consider a point P in the fluid
with mass m, velocity (u, v, w) submitted to a force (Fx, F , F ) with respect to
the (x, y, z ) coordinate system. The Newtonian equations f motion are:

: FV, -t J F::= l.+- =m -

If X, Y, Z are components of the force per unit mass acting on the fluid F
at P then

10) X :' &V = Y>S IV Z " V

are components of the total force acting on the mass dm. If J is the total
acceleration of a particle with coordinates x, y, z and mass dm, then the com-
ponents of J are

V - z ;1%The elementary inertial force dm J applied

to the particle has the components dm Jx, rm J and dm Jz" Integration of (10)
yields the components of the total force actinv on the volume V occupied by
fluid F at timp t.

11 X v a 6X,. afV fff 4 z V
Similarly the total acceleration for the same volume V at time t has the components

12) J fVyV ffJ~LA'V, 4, 1v :x
giving rise to inertial forces Jjf c Ai V SSL J.Vd/£ffCJz' ce the

V V ~ ~ l /~

fluid is in a State of equilibrium, these volume forces must be compensated by
the total force through the surface S limiting the volume V. This surface force
has the components,

13) 7. d, S) fT S JIT cS
so that the mechanical equations of motion become

J_ ( - ) LV -;f, s o -.

14) ff 4v('-Jy)cL V-ffs TLS
fffv (Zf-z)dV--fT Tz d, - o

We'may also say that the sum of all external forces must be equal to the
inertial force.

9
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5. Euler's Equations for an Idcal Fluid

Equations (1h) become simpler when we coninr tlhn cnse of an ideal (or
perfect) fluid for which the viscosity is negligible and the shear modulus is
zero. Usual fluids like water as far as acoustic waves are concerned al proach
ideality sufficiently to make use of this simplification. It is in agreement
with Prandtl's hypothesis according to which, with fluids of low viscosity,
the effects of viscosity are limited to a narrow region along the boundaries.
In many real cases, fluid friction is so small that the hypothesis of ideality
is sufficiently accurate. For an ideal fluid, the surface forces through dS
are all normal to dF and directed in the positive direction. Denoting asc(,
P9, y the direction co-ines of the outer normal to S at dS, we get for the
components of the forces Tx, Ty and Tt

P 
115) Tx = P xC. =  dPx

P P,
Ty . Py d P

P0
Tz =Pz y = I d P,

where Px, Py and P. are the components of pressure in the x, y and z directions.
Since dPx = x, dy, ap, we r = 8x dx = P0

\~dX P aYy, dP Ca weZ get dPx =~ )d
etc. consequently,

dx dS =r PC) dV
16) = JXA~ ,~ dPx) dS =f, aS=xU d

Substituting in equations (lh) we obtain

17) O(X-Jx) dV - (-) dV = 0

ff~,(Y-Jy) dV - f-ff (*~ dV=0
/f (Z-Jz) dV -fff (V)=dVSfV ffv <P )~

These equations must hold for my volume whatsoever, in particular for an
arbitrary infinitesimal volume dV. This requires that the integrand vanish.
Therefore

18) o(x-j x ) - 0 - 0

o(Y-Jy) - = 0
ay

a(Z-Jt) - a = 0C)z

10
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Now, let us follow the motion of a certain particle of the fluid in terms
of time t. When passing the point P at time t it has the velocity (u. v, w)
and obviously the values of these components depend on coordinates x, y, z of
the particle. In turn, the latter depend on time t, since the coordinates of
the particle vary when time increases. Thus, u,v and.w are functions of x, y, z
and -c

19) dx/dt = u(x, y, z, t)

dy/dt = v(x, y, z, t)

dz/dt = w(x, y, z, t)

and x = x(t), y = y(t), z = z(t). Consequently the acceleration becomes

20) -- 'J d-tI ,+ (L)T & _t J t a-

y - : z &t at A-- LL 7F_)

Szz ot _ a;w- C _ 4 ,.:(a v  (a)

using the well kiown formulas of partial derivatives and the chain rule.
Replacing in (18) Jxi Jy, Jz by their values (20), we obtain the Euler equations

21) ( c-'P ( L -- - _) -( - w

•C whXh whe itg ate iethe 6odin (k be saisid0y2h1 vrabe

-v

cdy - -) 0 -

aP z

,which, when integrate.d give three conditions to be satisfied by the variable~s
u, v, w. Together with the equation of state (1) taken in the adiabatic form
not involving temperature T, i.e-, pvo( = constant; since temperature has no
time to vary during the processes we are dealing with, we obtain four conditions.
Ile still need another equation to determine the variables P, , u,v and w. It
is given by the Law of Conservation of Mass, and the Continuity Equation.

11
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6. Continuity Fquation

Consider a particle of the pprfect fluid (ideal frictionless medium) with mass
dm occupying the volume dV at time t and having the coordinates x, y, z. We have
dr'= odV where a is t dpnsitv at the point P(x, y, z) at time t. When t becomes
tI  t + dt is at Q(X , yIP zI) with coordinates

2?) X' = x + u dt
ya = y + v dt

+wdt

Th volume occupied by the same particle becomes dV1, its density Cy at
time t but the mass remains the same so that

23) dm =OdV =0dV t

Fince a is a function of x, y, z and t wc may write o f(x, Y, z, t) so that

24) a' = f(x', y', z, t )

= f(x + udt, y + vdt, z + wdt, t +dt)

Using a Taylor series expansion limited to the second term we have

25) :a + L) )V +(a)w + dt

On the other hand dV= dxt dy1 dz/. The term dx1 dy' dz' may be computed
by differentiating formulas (22) which yield

26) dxt = dx + du dt

Idy = dy + dv dt

dz I  dz + dw dt

Partial differentiation of (2?) or division of (261 by dx, dy, dz gives

27) ax =i+ / at )dt dt

aE =Lvdt 1 l+(10v)dt atdtav

ax C ( )dt

8x C C)Y 5 z 'a.

ax ax ay yz

12
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Substititing in dV - dx dy dz and neglecting terms containing (dt) and
(dt)3 we have

28) Ov= a V t 4 1- ) -]

From (23) we deduce, in the same approximation, using (25) and (28)

29) -6yt Q)c4 4)(w\ c

Neglecting the (dt) term (29) becomes

V adLL aV CC
30) - 2- + 4- L 4- ~ VcV

which reduces to

KL ' ) \A/
(30) can be written

31) C-,=

which is the continuity equation. It represetts the conservation of mass in a

differential form. Indeed, integrating (31) over volume V we obtain

32) IV4-f 4 - d =0

fyG theorem for a vector K where

7 = (Kx, Ky# Kz) we have f 5  Kn dS = J div 7" dV, which means that the surface
integral of the normal component Kn of K over the surface S .equals the volume
integral over the volume V bounded by S where div K = Li X • K

- 4- .V -

The integralJ y -IV+ g-} dV of (32) can therefore be written in the

13
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form of a surface integral, surface S bounding volume V. Denoting as K the
vector with components aua v, and ow, If fV div K dV Jf Kn dc. If S is
the surface bounding the fluid, no amount of fluid flows through this surface
and as 1K is the vector through this surface thenJff Kn dS must be zero, where
Kn is the component of K normal to the surface. The integral

fff (at) dV of (32)

may be written as

It fff8 at t"ff d P a

Since the second integral of (3) must be zero then (32) reduces to =0 and
the mass is conserved. This implies that no fluid is created or destroyed
inside V.

14
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7. Force Potential andVelocit Potential

The Euler equations (21) may be put into a simpler form when three supple-
mentary restrictions are valid.

First, assume that the external volume $orce X, Y, Z derives from an energy
potential V, so that

33) cV C

Second, there is no rotational motion inside the fluid so that the fluid

velocity must derive from a potential k

34) = - -- V =-34)) u.= a-- z

The negative sign indicates that an increasing energy potential V causes the
velocity of the fluid to decrease.

Third, the equation of state is valid in the adiabatic form6= f (P) solved
with respect toS,

When these th'-.e conditions are satisfied we may define a new function

35) V_~If

Introducing .his equation into the Euler equations (21) and replacing X, Y, Z
by (33) and u, v, w by (34) respectively, we obtain for the x component

I _4

36) oq~ c 6. C C)C z_ zC

and we get similar formulas forc / and)/NZ, replacing x in (36) by y and z

sucessively, As is a uniform function of x, y, z and t, wc have
) _& 8; for x, Y,, zt t.

a - -)YC a)

Thus, the right hand side of (36) can be written in the form

37) _1

7 7~ . Me
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since at. a
ax a' ax)

ay 3axy 2 ax

ai a o 1. a at
az axaz 2 ax

consequently, we may write (36) in the form

38)~~ ~~ ~r+-(,A)\ (a-\ -ax L at 2 Y9ax (ay )Jj

The quantity within the outer bracket,

2I

at. 2aaz

must therefore be independent of x as its partial derivative with respect to x
is zero. Similary, replacing x by y ind z successively, we can demonstrate that
the same quantity i independent of y and Z . Thus it dejends only on t and we
can call it H (t). If it is assumed that H (t) is continuous in the domain of
variation of t, then' there exists an integral T) (t) =JH (t) dt so that

•i (t) (t

dt

and we may write

39) 'Q+ L " qo (t)
2 2 2!

dta dt

or

at 2 a a z,)

Now (hO) we can replace everywhere by 4 =f . 1 (t) since 1 (t) depends only
on t and not on ', y, t. We obtain

16
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or, replacing etc. . by u, v, wwe have
I

41) al 241) I -7Z LL +V 4-W ._

This equation, together with the continuity equation (31) and the equation of
state in the form (3) gives three equations to determine the three unknowns
P and~in terms of x, y, z, t and arbitrary constants,

17
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8. Wave Equation

If the velocity of the particles of the continuous fluid is small (a con-
dition always satisfied if we put aside shock waves of great intensity or
explosive impulses) we can neglect the quadratic terms uR + v* + wi in (41').
The latter reduces toal'
h2) Q + - o or V- + -o

at f 0 a

owing to the definition (35) of Q. Fuppose now that there are no external
volume forces; i.e., V = 0. Then (2) becomes

43) d=P tiJo at
Now, for waves of weak amplitude the mass density 6 is very nearly a constant
and for a variation of pressure from P to P we may write

P

44) dP L (PPo)

where ao is the average constant density. Equation (3) then becomes

45) P-Po  a 0 ot

consider now the continuity equation (31) where u, v and w have been replaced by
their expression (34) in terms off. Since

dLi aIk LI CL A
ax ax ' ay ay 'az az

we may substitute for J' . We obtain

Since .. 4 -. j. V ',Ewhere \is the Laplacian operator, we may write (h6)
( ay W .

in the form or, + +w(' z)=V orsince = c 0o independent of x, y and z
atay kaz)

47) 8°°=

18
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According to the equation of state (3),edepends explicity on P. Consequently,
we can write

48) C S --- P

Differentiating (45) with respect to t and noting that~and P. are constant with

respect to t and that,'may be written :

Substituting this value for CP/6t in (48) we get

'50)
0= - c8P co 0±

Substituting (50) in'(47) we have

31) < :c] ,. o (

On settingc'.= _p equation (51) becomes

52) ".

Equation (52).is cal'led the wave equation. It represents waves propagating in
the (x, y' z) space with velocity c, It can also be deduced in the following
way: suppose that the volume V containing a certain fixed mass of fluid varies
and becomes V .  :-This defines the cubic dilation 3 as the ratio

53) _ V -V
V

So that V.= V(1 +S) On the other hand, if the density of the part of fluid
contained in a fixed volume V changes so that the density.becomes 1, the
condensation eis defined by

So that .4 (L+H), In general, changes in density and volume in fluids
result from pressure 'changes. The excess pressure P-Po over the static
pressure Po is called the acoustic pressure. The bulk modulus B is defined as

55)

AsV6-V~mTbecause of the conservation of mass, using (53) and (54) wa get

*../% V- = -Ve (,i+S (I+ E,--VSQ+,C4G_+56).Neglecting the cross-product e we get
4 S 4-and therefore B -. Next.
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consider a surface 3 and a volume element Odz and suppore for simplicity that

the fluid is deformed only in the z direction. A particle of the fluid which
was at z at time t undergoes a displacement dz = dl. The displacement of the

artiCle occupying the position z + dz at some time t will be 1 + dl where dl =

) dz. If the Iressure at z is P, the pressure at z + dz is P + dP =

p ap + dz, whelre P is the force per surface unit. Consequently, the not

force i n the z dir'ection is equal to _P.- S (P + (k" dz da- dz. The
mass of fluid contained in the volume element Sdz isSdz. Thus4 Newtonian
dynamic equation in the z- direction is

8t55) S~a I dz F'dza-
) z j tt

hence - = l Now, since P BE, we .deduce by differentiation, B being

a constant:

8z

But- S()dz

VV 1 = 8-' .o that

V Sdz

P -and we haveaz az a

56) ; &

which is a wave equa'tion in the z direction, emphasizing the role of the coefficient
B. For adiabatic prOcesse'a in ideal gases we have PvC= constant so that we can
define the adiabatic bulk m6dulus by differentiation:

vdP + .v Pdv = O.
T s dP = dv p =P s th t ( P dP - Bi7

Thusd P P s that.6P L = B and c - X . We can verify

that (56) or (52) represents a* wave equation in the z direction. In that case,
the general solution to this equation is h - f (z + ct)+ g (z-ct) - f (u) + g(v)

on setting z + ct = u, z - ct = v. Differentiating h with respect to t and
z we obtain:

L _= af au + a _ c af _ 8..
at au8t af t au av /

t I0 at

20



Lab. Project FR-68
Progress Report #1
Enclosure (1)

8_ V_ ! 
+

__ - a 3z 8\ U V

The functions f and g represent any differentiable function. According to
the equation h = .f (z + ct) the deformation f (z) which at ti'e t = 0 was at
z = zo is at time t at z + ct with the same functional form f (z). Thus, the
wave propagated from z to z + ct with velocity c. In the same way a wave with
the functional fO-.m g (z) is propagated. from z = zO to z-ct with velocity c in
time t. In the general case, consider the wave equation (52) where c is a con-
stant and we take as a single independent variablee = (x +,y +Yz + ct where

O(J, and "( are constants. The wave equation beco ies

Thus, when (+ = 1, any differentiable functionil is a solution of
(2), AIso, =*1 x +Y z - ct icads to a solution of (52). Thus,

iJ *ff (2MQ is'a solution where f, , f2 are arbitrary differentiable
functions.
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9. Wave Equation in Cylindrical Coordinates

For our aim, which is to analyse the behavior of sound waves in tubes, we
have to express the wave equation (52) in a cylindrical coordinate system instead
of the usual rectangular system. The cylindrical system is more adapted to our
problem and has the supplementary advantage that we can define in it separated
soluticns-i.e., solutions formed by a pzoduct of functions, each factor of which
depends only on one coordinate. These separated solutions satisfy a system of
ordinary differential equations - which are much easier to handle then partial
differential equations - and all solutions of the partial differential equation
can be determined as linear combinations of each term of the set of separated
solutions. Thus, to integrate equation (52) is equivalent to determining the
separated solutions. The coordinates for which such solutions exist are called
separable coordinates.

We choose as coordinates a directed radius r slarting from the origin of the
rectangular coordinate system and situated in the (x, y) plane and angle e
which is the positive angle determined by r with the x-axis. The (xe y) plane
nan be regarded as defining a cross-section of a certain cylindrical tube. The
z axis in this care is along the longitudinal axis of the tube.

To express (52) in cylindrical coordinates we notice that r, e are simply
polar coordinates in the (x, y) plane st that the definition of the cylindrical
coordinates is given by

57) x = r cos e
y = r sin G
z = z

or, in terms of x and y

58)

Differentiating (58) we get

C_ -------- --- o s

59))
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The wave function (x, y, z, t) when expressed by means of the variables
(r, G , z, t) becomes another function I (re, z, t). In order not to needlessly
complicate the notations we shall retain T in any case. Applying the f6rmaulas of
partial differentiation we get

60) - 3_ __

. -- -
Substituting (59) into (60) we get

61) co () C _I

0 S Lv% '1

Consequently

63) _) - o
C)~ Co)

differentiating (63) we have

64 b2- - - )-

L

co-C- e - - 5o s o _A
CO.e C) V- C)C

a ,-~~ ~~~~~ 'S -  sse+ a0 4-3e l t e e r .
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afCos L a OS
-r2 sinl 9 + -a - p -n

C ag r

Cos jf 4 a'i Cos 9 61sin 9
r c r r

Adding - and - we getadding ax) 2

ay

65) + + + - + L

so that the wave equation (52) takes the form

66) :44 + I + IT. iqiar r r ra + 97%
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10. Searted Solution of the Wave EguacionS

We have already seen that in cylindrical coordinates equation (66) is separable.
consequently, a solution to this equation is given by

6-7) 1 (r 1B. z . t) =-A(r) B(e) C(z) D(t)

Each factor of the product being related to one variable. Substituting in (66)
the product (67) we obtain

2A  a z C
68) BCD .Z2  AGCD e 4 A TU "2

a2 D

= ABC (atz
Dividing every term by ABCD (68) becomes

69) A _5T 4 )z~

The left-hand side of (69) does not depend on t since it is only formed by the
functions r,6, z and their derivatives. On the contrary, the right hand side of
(69) is only formed by a function of t and its second derivative. Thus, when t
varies, the left hand side remains constant and when re, z vary the right hand
side remains constant. As the right hand side is equal to the left hand side we
conclude that it is equal to the same constant, that we can term k1 . Hence

70) 1 D- = k Z5v. = k c D

The general solution of this ordinary differential equatior of the second
order with constant coefficients is of the form

71) D= e kc

where ,andhlare arbitrary constants. We see that (71) represents harmonic
waves only when k is purely imaginary. Hence we may set

72) kc Q T3 T 0 a~ k- 4t/C = 2rrj/x
where is the wave length of the periodic phenomenon and.t is the frequency, In
general, k is complex, k = a+jb, and involves an attenuation factor "a" so that (71)
becomes (a.+3b)Cot c
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a and b being real numbers. The arbitrary constants hI and h,, , in general
complex numbers. Futting the right-hand side of (69) equal to we can write

73) 1%?A + I_ _A + 1 aO _ 91_3 _
73) +L ~+.~

A ar Ar 8r Brit 8 0  C az 2

We find ourselves in the same situation as previously. The right-hand ,tide of
(73) is only a function of z and the left-hand side only a function of r and Q.
As they.are equal to each other, they can be equated to the same constant(k')?
Thus

7h) at (k kI1)

The general solution of this ordinary differential equation of the second order is

75) = C 1e + CZe

Replacing the right-hand side of (73) by O1 )gand subtracting 8RB we obtainBr £ weaotai

76) " + L + 1 A = (l D
A ar2  Ar 3 r r 80G

multiplying by r

77) r (f1  A + 1 A .)2\ la B
\Aar2  Ar ar B a01

Again, the right-hand side of (77) is only a function of 0 and the left-hand
side is only a function of r. Thus, they are both equal to the same constant
that is customarily called mW. Accordingly, we have

78) - = - M B

The general solution of which is

79) B = Bi e Jm@ + B. e jmQ

B1 and Bg being arbitrary constants. m must be a real number, otherwise (79)
would give vanishing or unbounded solutions. If m is not an integerthe wave
B~eJmo + B2e-lmO represents a progressive wave in the 0-space. For, B is
changed toB3; B by a 21Crotation. When m is an integrr, for 0 = 0 or n 2'R,
n an integer, B. + BA = B remains the same.Physically, this means that the
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wave front after a complete rotation of n 2U degrees comes back to the same phase.
The wave is thus rtationa a in the Q-space.

OfNet, replacing in (77) the right-hand side by M2 , substituting for(k), h±=
k') and conveniently arranging the terms we get

80) d"A + IdA + (h 2 A =0
dr2 r dr r

Finally, replacing r by a = hr we obtain the reneral Bessel equation

81) d2A + I A + (1- --) A = 0
ds2 a ds So

The partial derivativea /(3s has been replaced by the total derivative d/ds
since s is the only variable. The general solution of (81) can be O.ven in terms
of the Hankel functions of order m of the first and second kind Hi(@), Hm (2):

82) A ~.ii(1) (a9) +c0( (2)82) A--o=0 ( 1 ) H

In Tractical applications the Hankel Functions are used to represent progressing
cylindrical and spherical waves for the following reason. If we assume that s is
very large so that we can neglect 1/s2, (81) is simplified. On setting A /s = f,
it becomes in this approximation

83) d +f o

ds2

This equation has the particular solutionsOte j s representing progressive waves in
the s-direction. In fact, for large s, the Hankel functions have the asymptotic
form

Sei (S ) -7Carg s<

Hm(2) =/ e-j (s - iR - 47) - 21t<arg s<t

Hence, they differ from f/yV only by a constant. Now, we can define the Bessel
functions Jm (s) by the relation

8k) Jm (s) m() (s) + Hm(2) (s)]
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9

Because of the linearity of equation (81) they are also particular solutions of
tis equation. According to (8h) their asymptotic form for large s becomes

n~7E

s ~ ~[eCos (a- T 4

(85) is more adapted to the description of stationary waves as it involves

waves in the I a directions. When m is not an integer, the general solution of
(81) takes the form

86) A - Jm (8) + PSJ-m (a)

where

J11  ( ) 
(-1)..

n I' p(wn+nl)

00 (.2n n

(-b ) M Z n I p(-m+n+l)

where r is the gama function.

When m is an integer, Jm (8) degenerates to the form (-1' Jm (a), making Jm (a)

and .-m (s) linearly dependent. As we must hive two independent solutions, the
second solution is now given by the Neumann function ,m (s), defined in terms of
the Hankel function by

(1) 05(. () ( 2 (B

=(m-n-) -m

nno

nO
. ' 4 i)n (hn+m + hn', 'yn: 2 n . •*

no ni (n+m)i
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m 1, 2, 3 .... 0.57721

+ + i + + • h 003 k~ h =

so that

87) A=c<, Jm (s) O(2in (s)

The Asymptotic form of Nm (s) is proportional to sin - - - T-) so that the
Neumann function represents a generalization of the sine function. ITMen h2 is
negative nothing important is changed in the form of the solution, although the
Bessel function depends on the imaginary argument of s, hr = jk2r. For a solution
of (81) is also given by

88) Im (js) = 9-i7 Jm (jk~r)

where Im (Js) is a real function of k'r which, when m is.: an integer, degenerates toi, i m (s).

The Bessel equation (81) is solved by a series expansion. On setting A = SaCj +a+ic2 + ... * + C + .... , differentiating A and equatinc the coeffi-
cients of the same power of s we obtain for the Bessel function of m order (m an
integer) the series

89) Jm( ) = L m 1.)L.. (,) m+2
mI (m+l) 2

+ (_l)k (s)m+2k

kl.(m+k)L 2

Series (89) converges for finite values of s, oscillating as the trigonometric
functions do, but with an amplitude which decreases as 6 increases. Between the
first two Re,,sel functions Jo and J, we have the relation

90) jJa d, -Jo (a)

Remembering that the fundamental particular solution of (66) is (67), we have to
substitute for B, C, D the values (71), (75), (79). For the radial function,
if we consider the progressing waves we can choose (82).

As we need only two constants we write tbe particular solution in the form

(91) ( 2. (Hm(1 ) + -(?Hm) e e eWK
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If m is not an integer this describes a progressin, wave that propagates
in the z direction in a screw-like manner. When m ir sn integer we may also
represent f by a superposition of stationary wnves. In this case we choose
for the radial wave function the solution (87), so that

92) ~ cim+ 4(11m) e*timg e ibct e~j~)k A

The general solution is a linear combination of (91) or (92) and may be
written for instance using (92)

93) e *",. , ("(.,Jt e , m •

m, k# k being variable parameters.
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11. Digression about Function Spaces 6'

ft woiId appear surprising that the solutions of certain differential
equations could be expressed in Feveral different ways, for instance that the
general wave solution of (81) could be expressed either in terms of elementary
progressive waves or in terms of stationary waves. Such a property follows
from the fact that the elementary functions, for instance Jm or Nm or in the
case of a Fouripr series ao, an cos nx. bn sin nx, form what is called a com-
plete system of functions. This is readily undercowuu by allealing to geometrical
intuition. Consider a linear vector space of n dimensions, Rn. This means that
there e~ists a fundamental system of unit vectors P., e , . . . ., en such that
all other vectors of P n, for instance ,± can be represented in terms of the Pk or
more precisely can be regarded as linear functions of ek:

.- - I

9h) I.L=2I. ex + p 2e2 + " " " +p.ne~ p.Ikek

We say tha. the ik form a complete system of basic vectors. Of course, we
can choose another set of unit vectors el which will also be complete. 'Thisk
means that the -k can be expressed as linear functions of ev

- 7' '7, I
95) =-ie-PI ,-  e,, + + .tnn =  pkek

We can also say that the set p. has the components p! k in the representation
asso-iated wit- the'e k and _' in the representation as, ociated with ek or that
ek, e k define two different coordinate systems. The T1, ek and' %K are quantities
that are defined by a magnitude and a direction. There are, however, mathematical
objects of a more general character which satisfy the same conditions of completeness
and linearity and consequently define a linear space. The elements of thie linear
space instead of being vectors are functions. For instance, we can speak of tne
space of continuous functions f(x) for O<x<l. f'we take as basic vectors the
quantities 1, cos x, cos 2x, . 9. .. , cos nx . G . , sin x, sin 2x, . . . . I
sin nx, . . . , this system of functi.ons is complete with respect to uniform con-
vergence in the space of continuous periodic functions, This means that any con-
tinuous periodic function f(x) being given in a certain interval, it will always
be possible to represent such a function in the following way:

00 *

96) f(x) ao +2a Ccoslk+ : bksin o

We recogni e the expansion (96) as a fourier series. But, on the other hand,
the system of finctions 1, x, x2, . . . , xn ', . . . is complete with respect to
ordinary point-wise convergence in the space'of continuous functions. Thus, if
in example (96) f(x) represents a continuous periodic function, it can also be
represented in terms of the basic functions 1, x, x2, . . .

These examples are sufficient to show that under very general conditions a
continuous function can be linearly represented in terms of a sequence of
definite other functions and that the choice of these functions could not be unique.
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For instance, a function coula be represented in terms of the Legendre polynomials.
or in terms of the Ifermite polynomials. More particularly, the Bessel function
Jm(s) where m is an integer form a complete system able to represent under general
conditions a continous function f(s). A general wave solution of (81) can thus
be represented in terms of progressive waves or in terms of stationary waves.

ss

32



Lab. Project FR-68
Progress Report #1
Enclosure (1)

-1?. Proper Frequencies of Radial Waves
7

No simple result could be obtained from the study of waves as complicated
as those described by (93) that have variable frequencies and amplitudes.
Fxperiments to test the acoustic properties of a sample at the termination of
a tube are necessary using monochromatic plane wave like

97) f(z, t) = AeJkz ejkct

with constant amplitude and frequency. In this way, we are able to unequiv-
ocally compare the amplitude and phase after being reflected by the sample with
the incident ones. Thus the experimental problem is to produce only waves of
the form (97) and not of the general form (93). This problem can be discussed
mathematically because (97) is a degenerate form of (93). Thup, we have to
determine under which conditions (93) reduces to (97). Fhysically production of
waves like (93) means that it is not sufficient for producing a monochromatic
wave to give a piston at the end of a tube a sinusoidal motion u = uo sin 2itvt
because Huyghen's principal states that each point of the piston surface can be
regarded as the source of a wavelet expanding in the three dimensions of space
and thus giving rise in general not only to waves along the z axis (which is
the tube axis) but to waves in the perpendicular (x, y) plane that are described
by Bessels function and consequently do not have constant amplitude and
frequency. This part of the general wave is just what is described by
O(Im Jm +O(em Nm in (93). As s = hr it is in the direction of the polar axis

r =Vx t  yv which is perpendicular to the z axis.

Now these radial waves are associated with a discontinuous series of
freouencies, because they have to satisfy the two following conditions that are
very restrictive:

1. Their amplitude cannot be infinite at the origin r = 0, which would be
contrary to experimental restults.

2. They must be reflected by the walls of the tube, regarded as a perfect
reflector.

The first condition eliminates the Neubiann functions Nm(s) which are not finite
at r = 0.

The second condition requires that the components of velocity of the radial
waves at the wall of the tube vanish so that the waves are entirely reflected.

Thus, if the radius of the tube is defined by r = a, we have, as the velocity
components derive from a potential § according to (34)

a a a = (.a 0

Hence, by solving (61) we obtain

= (cos 9 + sin 0
a y/ a

33



Lab. Project FR-68
Prog-ress Report #1
Enclosure (1)

According to the first condition we have to put in equation (93) Nm _ 0 for
all m. Further, taking the derivative of (93) with respect to r and letting

C )a = 0, we obtain
98) (a=-M 0 for r = a or for s = ha

a being givan, cordLion (98) carnot be satisfied for any arbitrary value of h or s,
but only for a sequence of discontinuous values h or sn. Thus, if we term hm the
parameter associated with the function of m order Jm, the different values of hm for
which (98) is satisfied can be denoted lmn , corresponding to Smn. In the following
table we 1give the values of Smn corresponding to the zeros of

S Jm f or m = 0, 1, 2, 3

and n = O1,. 2, 3.

TABLE 1
s n for JoO= sgn for Ji =0 for J'=o for ,'=0

O 0 1.84 3.o5 1.20
1 3.83 5.33 6.70 8.02
2 7.02 8.5h 9.97 11.3h
3 10.17 11.71 13.17 14.59

Consider the go.eral solution

93- ) I C<XM im (hmnr)e ±jmG e jbct e Jk Z

SK tN'

In order that. § be independent of r, which is the first condition for a
plane wave along the z axis, hmnr must reduce to a constant, otherwise the function
Jm (hnr) cannot reduce to a corntant. The term hmnr= C is impossible since himn
and r vary independently of each other, unless C = 0, which implies that hmn = 0
since r always varies from r = 0 to r = a. Thus a., = 0. Referring to the defini-

.ion of J.. given by (89) r see tat this solution is satisfied only by Jim 0 when
mkO, so that in this case wave (931) vanishes. For m = 0 we have the solution
Jo for any value of r and also

Jo _ J01 = 0.
8r

Thus all conditions are satisfied. As h ( k' 0, (93) reduces to

99) =L:O10 e jkct ejkz

i.e,, to the monochromatic plane wave (97). This lasts until we meet with the
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least value of' smn which is slO corresponding to ']= 0 according to Table 
1.

To explain this, cohsider pure radial waves along the r axis so that there is

no proparation along the z axis. According to (75) this meane that k=(kt)2 -.

Taking account of (72) and (71) we see that h corresponds to the frequency O-f a

periodic phenomenon v- such that

100) .hc

so that D 
= hI Jhct +,he-jhct

1ow Table 1 shows us that the smallest value of Ptn = hmna is at 8l0 = 1.8h.

Thus, the smallest value of hmn is hlo= 1.84/a and the smallest radial frequency

is

101) V0= 1.8hc
2Ra

S2imilarly the second possible frequency V-correspond& to $20 in Table 1 so that

3 .o c
'20 = 21ta 3.83c

is the following frequency. Similarly, the r,.nxt admissable frequency is Vol = 28a

In general, the different radial frequencies are obtained by

NI'mn = hmrC/27' = snmc/21ta.

Thus, we have to stay away from theFe frequencl -,s ifr we want to operate on a pure

monochromatic plane wave;
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13. Definition of Specific Acoustic Impedance - Cornp.rison Between Water and
Air Filled Tube

The wave equation (52) is. satisfied by potential and also, as equation
(56) has shown, by displacement h. Morever, the same equation is satisfied by
pressure P, local velocity (u, v, w) and density a. To show that it is approxi-
mately satisfied by pressure P, we only niave to use equation (45), where ao i-
a constant and fi is simply called I, For, differentiating (52) with respect to
time t,.multiplying by the constant Oo and taking account of the commutativity
of the differentiai operators

a I A L and - since
5i I Y )az at

is a uniform function:

12o a(Vt) o a (a2 \) or
a02 al at \at I

V2(0,04) 1 a2y d) or

- 1. I t

Similarly the velocity depending on the potential } we get for u

103) - ap t- ) or

a(u-

2

and similarly for v and w:

V cw a- t

aonsider the simrle case where a monochromatic wave propaates in a certain
indefinite medium in the positive z direction so that
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1Oh) 
, t) Ae j kz ejkct

from (M%), the acoustic pressure is given by

105) P-Po = G Co jAkc ejkt ejkct

and the velocity w of elements of the medium in the z direction is given by

106) w a _ = - jAk e jk ejkct or

az

W = -

jkcOc az

The quantity e3 ket appears everywhere. To avoid using variable quantities of
this kind, it is convenient to define the new concept of specific acoustic imped-
ance of the medium transmitting the plane wave as the ratio of the external pressure
P -Po to the local velocity w. It represents the reactin of the medium to the
external pressure and is a certain measure characteristic of this medium. For
instance, if no velocity is communicated by external pressure to the particles
of the medium the specific acoustic impedance is infinite. It is defined by

107) Z P-
w

according to (105) and (106) for a plane wave.

We see that finally, despite the intervention of the macroscopic quantity w,
it can be measured only by determining macroscopic quantities like o and c.

As the subject of this report is concerned with the application of theory to
water filled tubes, it is suitable to compare the ac:ustic properties of air and
water as far as their behavior in tubes is concerned.

a. In air at rest the sound velocity is c = 1130 ft/sec. In water, c
5000 ft/sec. Thus, the w nvelength X = 41for a given frequency is 4.42 times
larger in water than it is i? air.

b, The specific im.pcance for air aL 20-C is,croc = 41.26 p
and for sea water at 20*C isa0 c = 1.5xl 5 &T . For iron anamsocsteel,
oc = 3.99x0 6 , 1- time scm - sec"

more than 10 times the value for air, but only 26.6 times
c m4---7 0 P Z water1larger than the specific impedance of water. On the other hand, /Z air = 361O.

Thus, for a given sound velocity, the amplitude of a pressure wave in water will be
3640 times greater than that in air.

c. If the acoustic impedance Z1 of medium 1 with local velocity Wl is much
larger than the acoustic impedance Z2 of medium 2 with local velocity w2 for. equal
pressures in mediums 1 and 2 we have
Z1 = P-Po- _L1ED Since Zl>> Z2 we have w2 >>w1 . Thus, acoustic

W2  Z2  W1
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waves from medium 2 will not penetrate medium 1 due to the smallness of w1 .

Since the acoustic impedance of steel is not much greater than that of water, we
can expect that acoustic waves traveling in steel Lubet, filled with water will
penetrate the walls of the tube to some degree. The standing waves actually
induce vibrations in the tube which in turn transmits thpse vibrations to the
water, disturbing the plane wave propagation. This necessitates a study of the

characteristic frequencies of the tube, Difficulties encountered by tube
vibrations can be partially eliminated by increasing the tube thickness*, by

damping the vibrations by surrounding the tube with sand or by avoiding the
range of chiridteristic frequercies. The Gerrians performed an, experimental
study of their tubes before using them.

d. The attenuation of waves is much less in water than in air, which
simplifies the equations.

e. The phenomenon of refraction is important in water.

f. Noises and reverberation are obstacles to reception as in air. They

are particularly important in pulse transmission and reception.

Tn general, the length, inside diameter and tube thickness cannot be

arbitrarily chosen but are connected with the possibility of definite oscilla-

tions. The length of the tube, in the case of standing waves, is related to

the maximum wave-length by the formula

1O8) L-

for a tube closed at one end and open at the other or by L= )K/2 for a tube closed

at both ends, A minimum frequency of VImin = 100 cps will correspond to a maximum
wavelength A = 1525 cm, assuming that the tube is infinitely rigid and that the
velocity of sound c = 152,500 cm/sec. Thus, according to (108) the length of the
tube will be equal to 3.8 meters.

For a pulse tube with a wave train formed by 10 wavelengths and a minimum

frequency 'Vmin = 1000 cps, we have X = 152.5 cm for each wave and X = 1525 cm
for the entire wave train. The length of the tube must be at least equal to
h12 in order for the pulse tbrmin'tion not to interfere with its front at the

initial section of the tube after a complete cycle. Other elements intervene
against lengthening the tube too Pruch. As the acoustic impedance of water is

close to that of steel, proper oscillatiols are excited in the tube which cannot
be avoided by clamping the tube. Their study is related tiothat of elasticity
in solids.

*Professor Skudrzyk of Pennsylvania State University has noted that, as the walls
of the tube become thicker, more of the acoustic energy of the sound wave travels
in the wall, thus complicating the mechanism of plane wave propagation.
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11. Reduction in Velocity 9

The sound velocity in water filled tubes is not quite the same as that in
free water, due to the flexibility of the tube. The sound velocity in a tube
with ideally rigid walls being denoted as co (same as in free water) and r-' oeing
the actual velocity in the tube, the ratio C'/,o is given by Korteweg's formula

I I
109) C h

where a is the internal radius of the tube, h ir the thickness of its. wall, K is
the Bulk M1odulus of Flasticity of water, E is Young's moduluz for the material
of the tube. An improved form of th equation has been given by Hutte:

110) c 1 + 2 K[(r2/rl)2 
- 2

Co E [(r2/r] )2

where r1 is the ihternal radius and r2 the external radius of the tube. Even in
the case of infinitely large wall thickness, r'/co is less than 1, due to the
compressibility of the wall material. For steel, there is a limiting value of
01/c o = 0.9892. We can see that reduction in velocity can be corrected by an
increase of the tube thickness. For instance, if r 2 = 2r,, formula (110) yields

I
111) 0.982Co

3 I-If r 2  rl, o 0.97.

Thus, the thicker* the tube, the better the experiment, as the reduction in
velocity becomes negligible. One must also consider the fact that some acoustic
energy travels in the walls of the tube and hence tube thickness will influence
proper radiations in the tube.

As far as the internal diameter is concerned, it should be less
than the minimum wavelength for two reasons:

First, the tube through which the wave-train proparates can be regarded as an
obstacle to this train. ',When the wavelength is very small compared to the linear
dimensions of the obstacle there is a shadow. When the linear dimensions of the
obstacle are of the order of the wavelength of the vibration, diffraction occurs,
so that propagation of a train of plane waves along rays is not possible. When

*See footnote, page .
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the wavelength is several times ]arger thnin then ob-.-r (in thii (are the
internal radius of the tube), the obstacle coes not. a-! reci-,bl, I'Orturb thr,
wave wrLion.

f'econd, we hive already reen that the fir t freoemncy corrcrprcnxlir; to a
radial vibration is igiven by (101) so that only a plq.ne w-ve "i, proaqated
below the lower frequency limit, v'O given by (101). Jor ,tnndinI wave tubes,
there arc strong characteristic vibrations of the tube wall. excited by the
radial oscillations and measurements a e very difficult above the limit,
frequency r"I0 The characteristic vibrati.cnv of the tube include longitudinal
vibrations, bending oscillations symmetrical to the q<is and two and three-
dimensional bending oscillations. The resonance frequencies of the ?ongitudinal
vibrationr are again associated with Pecrel's functions. They are gi,ven by the
formula

112) =C

whore L is the length of the tube. For wave,- or the fir. t kind m ? I ' ,r tne
number of nodes on the total length L. *or wavec of tc recona kind, ma2.
The third kind of waves hive 2n nodes on the circumference of any circular ring
(nb?) and r.> I nodal circlo,; in '.he entire length, the charact leri' Ltic
frequencies being higher thin thoee of the recond kind of vibratn.io's. 'Thir
limits the lenglhi that can be given to the tube as, according to (11-2), the
longer the tube, the lower the first characteristic 'reonuenry. . 1 ccerdii-,; to
equation (112), it is imposrible to avoid the charnctr'Pfitic re,:uenc-er o
the tube. ,,'or L = Irr , cm, Vi 762. ri's for L = 2CC cm, il, 30.3 e0,
for L = 3(O cm, v1 = ?1,.2 e I- ,s. To avoid tucii a riui .,scu, it i recor, ended

that the thickness of the tube (r2-rl ) be s, thi trio riti, r = (r5-r )/r, be
in the rang.e0. F-h3 "'oreover, the ami itudes oP he tlbe vibrati n hFh ouId
be reduced by rubber rings and a filter formed by t-.;o rins fartened together
by a brazed bronze sheet.

jext, consider formula (101) which 7i.ves the lowest Iessol frequency above
which no pure Plane wave propagates thruIigh the water of the tube. From (101)
we have

2a - 1,h k 0.586Xor = 3.2a,

where a is the rn ,s of th tu, be+ . For 2 . c-ind c = ,2,.00 cm/sec, we
haveX 3,<n = 3 55 cm and V-max = _ 1_I2O=]7,FR0 cp,. Above Yinaxx-a"A n

1 l7,850 cps we h.,ve radial waves superimposed upon the transverse waves and
the wave moay no longer be considered a plane wave.
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15. Propagation of Plane Waves in Water Filled Tubes
9 '1 0

We begin by a little digression about complex numbers. Any complex number
may be written in the form w = u + jv where u and v are real numbers and j =
The numbers u and v may be regarded as perpendicular coordinates in the w plane.
Thus a complex number is utilized when we are dealing with a quantity that depends
on two other independent quantities. Passing to polar coordinates we may write
w = r cos Q, v = r sin Q so that w takes the form w = reje where r plays the rcle
of an amplitude and 9 that of a phase angle, which is very convenient for the
study of periodic motions. As sample materials in water filled tubes modify both
amplitude and phase of plane waves, their action is most conveniently represented
by complex variables. By definition, Iwi = r = u and 9 = tan T_.

U
Now, returning to the case of a water filled tube with uniform cross-sectional

area S, starting at the origin of coordinates z = 0, and extending to the right
along the z axis. The harmonic wave produced at the origin by an audio oscillator
gives rise to a series of plane waves like (104) and (106) whose characteristic
impedance is given by (107).

When the tube is of finite length L and closed at z = L, the plane wave
generated at z = 0 will be reflected at the termination z = L of the tube and
there will be a mixture of incident and reflected waves. The total pressure at
any point z at any time t will be given by

113) P = (P. dj'z/c + P e+jcz/c) e Jct

where c = 27,,Pis the circular frequency. P+ is the amplitude of the incident wave
and P the amplitude of the reflected wave. P includes any change of phase at
the termination and consequently the amplitude- are complex. Using the definition
of pressure

P
5 o t

given by (45) (where P is written =i'.ead of P-Po and Iinstead of '*) and for

@the plane wave equation

114) J= (J Zjcz/c +I- F-+jz/c) etict

we can write P in the form

115) p = t j) e r0"/c +m e c e"

so that

116) S ij+ = P+ and

dojE I= P_

*Recall that - and that for waves of weak amplitude we
z 67-Z

may let .L"(t)--C) so that may replace everywhere in our equations.
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In the same way, because of (34), the velocity reduces to w = - . Thus,
C)z

according to (114) and (106) we may write

117) w = (jC/c) @+ djcz/c _ eZ/c) e ijEt

so that

118) w - 1 P
j~co z

The specific acoustic impedance may now be given by
119) Z , e-Pc./c e +__ e'Z/c]

w ~ ~ ~ - e-jcz/c e4jC/

From (116) we have

120) Z = Pc[P+ e - j cz/c + P- e +j ez / c

P+  e-jcz/c - p- e+jcz/c

At z = L, the impedance has the value

121) Z = P + e-jcL/c + P- e +j/c

p+ e-JEL/c - p_ e+JtL/c

Obviously, we could have located the termination at z = 0 and the initi/I section
at z = - L which would give for (120) /

122) Z = ± c[p+ + p.

We can put formulas (121) or (122) in a more convenient form to determine

ZL from the experimental data. le define the pressure ratio

123) P- = e-2L so that

= lo P. - l o P Dividing the numer-ator and denomin.ator. of ril) bY n

and multiplying them by e we get
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121) Z'ej e / c + e- (it-jCL/c)
e4+jPI,/C - e- (-jL/)

The numerator of (12h) ir simply 2 cosh (p-jIL/c) and the denominator is
2 sinh ( -jCL/c) so that (12h) reduces to

125) Z = +toC coth (i-jCL/c)

The parameters ao, 2R1V-, L and c are known. ± iv determined experi-
mentally. There are two methods. First, the method of Lhe pulse tube and
second, the method of the standing wave tube. We shall first discuss the
pulse tube method.
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16. Measurements by the Pulse Tube Method
9 '10 '12

I

Let i = Ll + Ji2 and e-2tl = r, 2[L2 " so that (123) becomes

126) =- e-?l e -2j 2 = re -

F+
Thus, r represents the ratio of the real amplitudes of the incident and

reflected waves at z = L where the material sample has been set. It is an
experimental number that can be measured by the methods indicated in the usual
works. In the same way, 9 represents the real change of phase at the interface
and can be directly measured. Consequently [ and ZL are known.

In (l21) we can divide numerator and denominator by ej-L/c and denote

e-2 (p-jcL/c) as 1.4e obtain

127) z = +oc or, setting L =

aOc

we have

128) z _
00C 1-1

Equation (128) represents a well-known conformal transformation of the
theory of functions of a complex variable. On setting ' = u +jv, n = x+jy, the
lines u = uo = const., v = vo = constant generate a rectangular coordinate system
in the u, v plane. In the x, y plane these lines are represented by two families of
tangential circles. For, replacing in (128)*q by x+jy, multiplying and dividing
the right-hand side of (128) by (l-x)+jy we obtain

2 2
129) A'- u+jv = (1+jy) -x.

(1_x) 2 +y
2

so that

2 2i-y_-x 2y
130) = ujv = j-y-x

(l-x)2+y2  (l-x)2 +y 2

On setting u = constant uo, v constant v., we otain from (130)

131) (x- i) 2 +y2 1 + (a)

.0 (l+UO) 2

2
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Replacing uo in (131a) with numerical values we obtain

TABLE II

Uo Equation of Circle Center at Radius

14 ~ ~ I l 2  2 i(- o(x+ + y 3 ,)

-3 1x (3) +Y 0)117 7'
-2 (x + 2) 2 + y 2  1 (- 2,0) 1

-1 (x _00)2 + y 2 = (00, 0) 01

0 x2 + y2 . 1 (0, 0) 1

2' 1
1 (x - 1)2 + y2 (,0)

2 (x-) 2  + 2 (y1, o)
79 33

3 (x -3) 2 + y2 = 1 (31
1V ( 0)

(x -h) 2 + y2 = (, 0)5 27j

Thus, lines of constant A = uo > - 1 in the u, v plane transform into circles
with centers

( UO o' and radii I 1

Uo+l' l) Y+uo
tangent to the line x = 1 in the x, y plane. Lines of constant u = uo <-l in

the u, v plane transform into circles with centers

( u 0 O and radiiI

U0 +l /I 'oI

tangent to the line x = -1 in the x, y plane. The line uo = -1 in the u, v
plane in undefined in the x, y plane. Similarly, replacing vo in (131b) with
numerical values we obtain

.45
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TABLE III

Equation of Circle Center a) Radius

-3 (x - 1)2 + (y + 1,)2 1/9 (1, - 1/3) 1/3

-2 (×-1)2 + (Y )2  _* (, -k) 1

-1 (x- 1)2 4 (y+1)2 - (1, -1) 1

(x - 1)2 + (y _1)2 1 9 (1,1)/

1 (x1-) 2 + (y - 1) 2 = (1, 1) 1

3 (x - 1)2 + (y + 1/3)2 = 1/9 (1, 1/3) 1/3

1 (x 1)2 + (y -) 2 _1/16 (1, 1

Thus, lines of constant v = vo 0  in the U, v plane transform into circles with
centers

(1, i__) and radii li

tangent to the line y = 0 in the x, y plane. The line vo = 0 in the u, v plane
is undefined in the x, y plane. These relationships are shown in Figure 1.
Charts giving values of i, v corresponding to values of x, y are available
commercially and are known as Fmith charts.

Ruturning to (125) and substituting cosh ix cos x, sinh i'- = i sin x we
',4y write

4A _ tan h rL (l - tan2 -LL /-I -an h )132) _A-
°oc tan h2  t + La''2 CL

which determines u and v in terms of ± and . ,hen V2 and are 4 -- we
can also use the series c

133) tan h L --- +2 17 +
3 15 315

L el e3 L3 5r5 17 7tan + + 2 +- +~ hc
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E,quation (132) in a first approx.mation for high vralues of the impedance with

, aL less than 0.1 reduces to
C

131.+ Le+ T(l -P )134 ) C it

0.

These formulas give the characteristic impedance of the water at the inter-
face z = L separating the material under investigation and water. It is also of
great interest to know the value of the acoustic impedance inside a layer formed
by this material which is supposedly homogeneous.

This has been done as folloas. Consicer that the test substance forms a
layer in the tube between z = 0 and z = L (Figure 1) Above the test substance
we have a brass disk of thickness U and below thetest substance we have a water-
filled section S extending from z = - h to z = 0. Let co density of the water,
co = velocity of sound in the tube between z = - h and = 0, Zo = specific
acoustic impedance of the water-filled section of the tube. P+O and P 0 are
defined as the pressure amplitudes of the incident and reflected waves in S,
respectively. The total pressure in c is then given bk:

135) Po = (P+0 .e-T-oz + P-0 e+Tz) e±Jet

where T. =f0 o + J /Co. The constant o is an attenuation constant which is now.
being introduced. We then have a corresponding equation for the local velocity
Wo in $ so that the specific acoustic impedsnce Zo becomes:

(P+ e -oZ + p 0_ eT_ _ Oz )

136) - ± (J o/Cc)
X0o  (P+0 e-oz - P-0 e-"COZ)

To determine the value of Zo at Z = - h or at the interface t = 0 we need
only replace t in (136) by - h or 0. At z = 0 (the interface) wc have

137) boo___
oo"o

as usual.

In water, we can neglect the attenuation coefficientoc so that7. o reduces

to F/co as in our former equations. Replacing P_ and P+.in (123,) by ,Po and P+o

, 47.
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we may write PO/P+O re-J where ± = L + Jii' r e-2P' and 9 = -2p as
before. Taking the value of r in decibels we get

138) db = 20 log r.

Numerical values of Zo/o c may be obtained by Smith's charts as in the
foregoing formulas.

Now, let us call a. the density of the sample and c the sound velocity
in the sample. P.1.i and P- lare defined as the incident and reflected waves in
the sample andTS the value of T. in the sample. The pressure inside the sample
becomes

139) P = (P+x e-Z P . P.1e 4CZ) e± j-t

We have a corresponding formula for the local velocity w1 in the sample so
that the specific acoustic impedance ZI of the sample becomes

lliO) Z,,= O(i7j1 (P+ I e- z + P eT3z

(P+" eCZ - pi. e XZ)

where Z varies from Z = 0 to Z L. The impedance Z10 At the interface is
obtained by setting z = 0 in (lO). We have

P-i
Z1o0

P

The impedance at the bras, washer may be obtained by setting z = L in
(ihO). We have for 7 1L

l + Ip+1

lh2) ZIL E (ca2/ )
1- p ""

P+

Solving (1h2) for P- /P+ I we have

p+1 JC CIL + "I 1 ZI L
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From (139) we see that the pressure at z = L, PIL is given by

111h) F L = (P+I e-riL + p_1 e8 TL) e±Jet

and the corresponding velocity at z = L, WiL is obtainea by alplication of
(118) to (139) so that

lh5) 1 dP1

J ec dz

T (P+I e-T-L - P_ 1 e4 4L) e±Je;t

The brass interface may be regarded 
as a perfect reflector so that at

1l6) W1L =0

Thus, from (1h5)

147) p+3 e-TiL - p_1 I L 0 or

p
-c = e-M, 1L

Returning to equation (li1) we may write

ll0) Zo= (J oi/Et) 1+ e2tiu

1- e-ZC(L

Dividing both sides of (1lid) byeaL, where L is the length of the sample, and
multiplying numerator and denominator by et L we obtain

1119) Z!/ILL + e-t ]T, L em, L -e-TI

which reduces to

150) ZloL = - coth r.-,L

t1 L
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On setting Z10  R10 + JX1o andt 1 
= Il +J'2 and substituting coth jz = cot z

we have

151) RlO/e

F2L tarh pg!L (1+ tan2 p2L) + iL tan IL2L (l- tanh2 iIL)

~2 2 2 2 2 2 LP 1L2 + 122 L ) (tanh. glL + tan IJ.2T)

Xl04o 1 L

1L tanh I± 1L (1+ tan 2 42 L) -1.2L tan 112 L (1- tarl 2  L L )

(' 2 1L 2 + P2 L2 ) (tanh2 qi I , + tan2 P2 L)

Since I and P2 are known, we may calculate RIOk oIL and XIO/e'(;lL fromn(151).
Special charts are available which plot the functions (151), facilitating
computations. Once (151) are known, the components of the impedance of the
sample may be determined.

so
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17. The Standing Wave Y'ethod

The measurements of Z up to now have been considered as performed by means
of the pulse tube method. We had to determine the complex ratio

re
JQ

F+.

and the physical quantitie.; accesrible to measuremcnt, were the amplitude r and
the rhase angle Q at certain interfaces z = 0 and 2, = L. Thr relationship between
these numbers and the numbers RIo/colL and XO1 ko1 L of ZIA/aoIL
=R1okaL +JXl/ e L was then determined *from equations ClE) .or from special charts
of equations. t51).

h1en measurements by standing waves are performed, the fundamental quantities
to be measured are thd ratio Pmin/Fmax of the minimum to maximum pressure and the
phase difference as obtaired by measurement of the distance of the pressure nodes
from the sampie interface. The equation for pressure (113) and the relationship
given by (123) still applies. Then P+e- = PO = P.. e P and (113) can be rewritten

152) P = Fo (e L-jez/c + e(-jz/c)) e±JEt

P0 is a complex quantity whereas the pressure measured at different points
in the tube is real. To establish a relationship between thcse two quantities,
we must deal with the absolute value of P,'which is a real number defined by

where P* is the complex conjugate of P. Then, from (152)

153) IP!: IPo I JeIi Ez/ +

Letting . = I + J112 and noting that 2 cosh x = ex + e-x we can write (153)
in the form

15h) IP I 2P, osh (' -J (sz/c - '

- j sinh p.1 sin (ez/c - p.2)

Now, the absolute value of P is

155) P I= I'2Po I /cosh2 il cos2 (Cz/c -V2) + !,inh 2 ul sin 2 (Cz/c - 12)

which can be written (cosh2  i = sinh 2 pI 1')

156) Pi 12 P.Is inW2 t 1 +c0 cos (1 z /c - 2

S1
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We see that P is a minimum if cos (ez/c - P2) 0 which is satisfied by

157) L2 -ez/c = (n + ;) n = o, 1, 2, 3 * •

The maximum of IP loccurs if cos2 (Ez/c + P2) - 1 which corresponds to

158) L2 -ez/c ri , n= 0 1, 2, 3

Thus we have

159) I ma ximum 21PoIcosh pi

IP Iminimum = 21Polslnh PI

For a perfect reflector, pI = 0, 'P Iminimuri Q, I P Imaximum 21Po I"
In other cases, the ratio

I P minj/jIP max

is experimentally known and we have

160) 1 P min I/ p max 1= tanh t1 or

L tarb -1 PinV max or

if I' P inl/j P max = we iave

=1 tanh - P. and thus

161) 1I + p +  3/ 3 + P 515 + ""' + p n/ n +

2
which gives i by successive convergent approximations for 2 <, a conditin
always satisfied.

The problem can also be treated without using complex numbers, Consider

the local displacement caused by the acoustic waves in the tubd. It is given by

162) h = a cos k (ct - z) - r cos k (ct + z)

= (a + r) sin k ct sin k z + (a-r) cos k ct cos kz

where a is the amplitude of the incident wave, r the amplitude of the reflected
wave. -ne motion can be regarded as due to the superposition of two stationary
wavs of amplitudes (a + r) and (a-r) and, according to the definition of the
pressure P in terms of the displacement h
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163) Pi =0 'eh Pr -0oC
Cit  at

we have

1611) P = Pi + Pr =ckc2 [(a + r) cos kct sin kz

- (a - r) sin kct cos kzj

where k ' 21W/cV- being the frequency of the sound velocity c,0 0 the average
water density. We have

165) P min a -r 1
P max a + r Standing Wave Ratio

The reflection coefficient r/a of an imperfect reflector is expressed as

a SWR+I

For example, if NWR = 2, r Ia 3

53
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1i, 12
18. Illustrative Example'

Consider A set of measurements5 to be nmde by the pulse tube method. The
freqi -ncy range is from 2,000 cpcs to 20,000 cps and there are a minimum of 10
waves per pulse tra p. The characteristic impedance of fresh water is
ooco = 1.5xlO 5 gm/cm- sec- the thickness of the sample is 1.055 cm and its
density isol = 1.18 gm/cm. The operating frequency is 15,000 cps. We w7uld
like to determine the characteristic impedance of the sample, its attenuation
coefficient and the velocity of sound in the sample. Measurements indicate that
the reflection coefficient is O.9h5 and the phase change - 31.10.

At a minimum frequency of 2000 cps the wavelength per train of ten waves is

c 5000
n 0x 1 = 25 feet

The minimum theoretical length of the tube is therefore

L = I - 12.5 feet
2

Choice of this length implies thnt there is no time delay between the instant
the wave train leaves the oscillator and the instant it returns. Under a-tual
conditions there is a finite time lapse bctween projecLcd and reflected wave
trains, and the tube is generally made longer thnn thporetiral length to
accommodate this time difference. "'!e shall chnose a tlhe factor F = 0.75 so that

L = FX = 0.75 x ?5 = 19 feet

is the actual length of the tube.

If we choose our axes at the sample intprface we have, from (122)

1 + E--

ZOO_ P+

Z co =0o P

where - O- - =U + Jv and - = x + jY~i= .
as0  P4.

The complex ratio L is termed the reflection coefficient 'and consists of

an amplitude and a phase change, which, for this problem are 0.9h5 and - 31.10

respectively. Hence, we may rewrite (122) as

roo-1*
l-b1

where- = x + J y 09h5 e'i (310) Thus,
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x2 + y2 = (0.9b5)2 0.893
167) and

tan (- 31.10) = i -  - 0.604x

solving equations (167) we have x = .808 and y - .488 so that o 0.808 - j 0.488.
From (130) we have

2 2
1-y -x____... .= .397
(lx)2 + y2

2y
2 -355

(l-x) + y

andY 0 =\ + jv 0 0.397 - j 3.5.

The same result can be quickly obtained from a Smith Chart (Figure 3).
Equations (131) represPnt circles in the (x, y) plane with centers at (.284, 0)
and (1, - .282) respectively with radii of 0.716 and 0.282. To determine u and
v from a Smith Chart, draw a vector of length r = 0.945 at an angle of - 31.1 °

with the x axis. The head of the vector r lies at the point of intersection of
the two circles u and v. Values of i = 0.40 and v -3.50 may be read directly
from the chart without further calculation. -Thus

00O = Z-- = 0.397-J 3.55 0"

Since

ZIO - Z10 x-.oco

oleL aoc Xe L
0 0 aL

we have
!_O0 1.5 x 105 .397 -j 3.55)

O1 CL 1.18 x 2 3LX 15060 x 1.055 (0.

Z10- = Z10 x .5 =o0.51--: j 456

1 eL Coco

The funct ion

(151) Z1 051 J 4.56 =,!_-0 + i !1_0
lSL o1 CL leL
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is a function of the parameters plL and 1A2 T, and is available in chart form
(U.S. Navy Underater Sound Laboratory Chart). A typical chart is Fhown in
Figure 4. Entering the chart with values of

-= 0.51 and 1o- = - 4,56
OlCL aIcL

we fihd that pi T, = .025 and p2 L = .l55.

Values of p T, and p 2L obtained from the TIAVtDITRSOVN'NDLB chart may be
verified by subsfituting PiL - 0.025 and p2L = 0.455 in (151) and calculating
RIO/oIeL and XiWc/IL. Thus

RIO// le L -

. 55 tanh .025 (i+ tan 2 .h55) + ,025 tan .,55 (1- tanh2  .025)

2 2(.0252 + [A552) (tanh .025 + tan .L55)

RIO/O lEL = 0.528

Xl016 1eL =

.025 tanh .025 (1+ tan2 .[55) - .K50 tan .h55 (1- tanh 2 . .025)

(.0252 + [552) (tanh2  .025 + tan2 .h55)

XIO/leL = - h.A[9
of 0.51 and ! - -h56.These values agree within 4% of the chart values o - = 0.51 andC -L

Thus
_.025 _-037c -

i L = 0.025; P .0237 c- 1

p.2L = 0.165; 55 - .431 cm-1

1.055

and, since

-i =0 e'
- lo= 4 j C_ =tI + J L2

we have t

C4 = = .0237= attenuation coefficient

and

cI L2 = .131 so that the velocity of sound c I in the material beccmes
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C fi 2*nx 15000 = 2.18 x 105 cm/sc

c .h31 .1431

and the characteristic imoedance of the sample is therefore

-lO = 1.18 x 2.18 x 1o -2.57 x 1o5 gm
cm 2  

sec"
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CONFORMAL MAPPING OF J"L2a) uo  V / u 0
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PULSE TUBE SCHEMATIC FOR THE MEASUREMENT OF THE SPECIFIC IMPEDANCE
OF A BRASS DISC IN A WATER FILLED TUBE

z

z=L+U Brass Disc

z=L Sample Under Test

z=O

Water Filled Tube

FIGURE 2
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SMITH CHART REPRESENTATION OF THE FUNCTION Y(+'/I-)

IMPEDANCE OR ADMITTANCE COORDINATES

ca 0. y
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